Google Play badge

rəqəmlər


Rəqəmləri Anlamaq: Rəqəmlərin Tikinti Blokları

Rəqəmlər ədədləri yazmaq üçün istifadə etdiyimiz kiçik simvollardır. Onlar bütün ədədlərin tikinti bloklarıdır. Riyaziyyat və hesablamada rəqəmləri başa düşmək bizə müxtəlif üsullarla saymağı, müqayisə etməyi və rəqəmlərlə işləməyi öyrənməyə kömək edir. Bu dərsdə rəqəmlərin nə olduğunu, rəqəmləri necə əmələ gətirdiyini və gündəlik həyatımızda niyə bu qədər vacib olduğunu araşdıracağıq. Hər bir fikri addım-addım başa düşməyinizə kömək etmək üçün sadə dil və aydın nümunələrdən istifadə edəcəyik.

Rəqəmlər nədir?

Rəqəm ədədi yazmaq üçün istifadə olunan tək simvoldur. Hər gün istifadə etdiyimiz 10 əsas rəqəm var. Onlar: 0, 1, 2, 3, 4, 5, 6, 7, 8 və 9. Hər rəqəmin öz forması və adı var. Bu rəqəmləri öyrəndiyimiz zaman onları müxtəlif üsullarla birləşdirərək istənilən ədədi yaza bilərik.

Təsəvvür edin ki, rəqəmlər əlifbadakı hərflər kimidir. Siz söz və cümlələr yaratmaq üçün hərfləri birləşdirdiyiniz kimi, rəqəmləri də birləşdirərək rəqəmlər əmələ gətirirsiniz. Bu dərs sizə hər bir rəqəmin necə işlədiyini və onların bir çox real həyat vəziyyətlərində istifadə etdiyimiz nömrələri yaratmaq üçün necə birləşdiyini görməyə kömək edəcək.

On rəqəm

Budur istifadə etdiyimiz 10 rəqəmin siyahısı:

Bu rəqəmlərin hər biri vacibdir. Biz onlardan 10, 72, 103 və hətta daha böyük rəqəmləri yazmaq üçün istifadə edirik. Bütün 10 rəqəmi bildiyiniz zaman kitablarda, saatlarda və işarələrdə gördüyünüz çoxsaylı rəqəmləri yaratmaq üçün onların necə birləşdirildiyini görməyə başlaya bilərsiniz.

Rəqəmlər Nömrələri Necə Yaradır

Rəqəmlər rəqəmləri bir araya gətirməklə hazırlanır. Məsələn, 23 rəqəmini görürsünüzsə, iki rəqəmə baxırsınız: 2 və 3. Rəqəmlərin sırası sizə rəqəmin dəyərini bildirir. 23 rəqəmində 2 rəqəmi birinci gəlir və “iyirmi” ni təmsil edir, 3 rəqəmi isə bizə “üç” əlavə vahidin olduğunu bildirir. Beləliklə, 23 20 + 3 deməkdir.

Rəqəmləri birləşdirməyin bu üsulu onluq sistem adlanır. Onluq sistemdə hər rəqəmin mövqeyi (yer dəyəri adlanır) sizə onun dəyərini bildirir. Bu fikir bütün ölçülü rəqəmləri başa düşmək üçün çox vacibdir.

Yer Dəyəri: Mövqe Mənanı Necə Dəyişdirir

Yer dəyəri rəqəmin nömrədəki mövqeyinə görə tutduğu dəyərdir. Nömrədəki hər mövqenin fərqli dəyəri var. İkirəqəmli ədəddə soldakı rəqəm “onluqlar” yerində, sağdakı rəqəm isə “birlər” yerindədir.

Məsələn, 47 nömrəsində:

\( 4 \times 10^1 + 7 \times 10^0 = 40 + 7 \)

Bu onu göstərir ki, 4 rəqəmi 40-ı, 7 rəqəmi isə 7-ni ifadə edir. Bunları bir yerə toplayanda biz 47 rəqəmini alırıq. Ədədin hər bir rəqəminin yerləşdiyi yerə görə dəyəri var və bu rəqəmləri başa düşmək üçün əsas fikirdir.

256 kimi üçrəqəmli ədəddə birinci rəqəm yüzlər, ikinci rəqəm onluqlar, üçüncü rəqəm isə birliklər yerindədir. Bu fikir rəqəmlərin parçalanmasını və başa düşülməsini asanlaşdırır.

Sıfırın Xüsusi Rolu

0 rəqəmi çox xüsusidir. Görünə bilər ki, bu heç bir məna daşımır, lakin bizim say sistemimizdə mühüm rola malikdir. Yer tutucu kimi sıfır istifadə olunur. Bu, müəyyən bir yerdə heç bir dəyər olmadığını göstərir.

105 rəqəmini nəzərdən keçirək. Bu rəqəmə baxdıqda biz 1, 0 və 5 görürük. 1 yüzlüklər, 0 onluqlar, 5 isə birliklər yerindədir. Sıfır bizə 105-də onluq olmadığını bildirir. Sıfır olmasa, boş yer olduqda rəqəmlərin düzgün qiymətini göstərmək çətin olardı.

Sıfır həm də 10 və 1 kimi ədədlər arasındakı fərqi anlamağa kömək edir. Hər iki ədəddə 1 olsa da, sıfırın mövqeyi 10-u 1-dən çox böyük edir.

Gündəlik həyatda rəqəmlər

Rəqəmlər hər yerdədir. Taymeri təyin edərkən onları saatlarda, təqvimlərdə və hətta mikrodalğalı sobada görə bilərsiniz. Onlar mağazalardakı qiymət etiketlərində, məktəb kitablarınızda və idman tablolarında istifadə olunur. Rəqəmlər bizə vaxtı oxumağa, əşyanın qiymətini bilməyə və hətta ünvanları axtarmağa kömək edir.

Məsələn, rəqəmsal saata baxdığınız zaman 08:30 və ya 12:45 kimi bir vaxt görə bilərsiniz. Bu vaxtlardakı hər bir rəqəm saat və dəqiqə haqqında məlumatın bir hissəsini göstərir. Bu, rəqəmlərin vacib məlumatları çatdırmağımıza necə kömək etdiyinə dair gündəlik nümunədir.

Rəqəmlərlə sayma

Rəqəmlərlə öyrəndiyiniz ilk şeylərdən biri saymaqdır. Obyektləri sayarkən onların neçə olduğunu demək üçün rəqəmlərdən istifadə edirsiniz. Məsələn, 3 almanız varsa, üç rəqəmindən istifadə edərək 3 rəqəmini göstərə bilərsiniz. Əgər 10 karandaşınız varsa, 10 rəqəmini göstərmək üçün 1 və ardınca 0 rəqəmindən istifadə edirsiniz.

Saymaq rəqəmlərin sırasını anlamağa kömək edir. Siz deməyi öyrənirsiniz: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Bu rəqəmləri bildikdən sonra onları qruplara birləşdirərək daha yüksək saya bilərsiniz. Bu, güclü hesablama bacarıqlarının qurulmasında ilk addımdır.

Daha böyük rəqəmlərdə rəqəmlər

Daha böyük rəqəmlər yazanda daha çox rəqəmdən istifadə edirik. Məsələn, üç rəqəmli rəqəm 342 3, 4 və 2 rəqəmlərindən ibarətdir. Hər bir rəqəm bizə onun dəyərini bildirən xüsusi mövqedə yerləşdirilir.

Hər rəqəmə baxaraq 342-ni parçalaya bilərik:

\( 3 \times 10^2 + 4 \times 10^1 + 2 \times 10^0 = 300 + 40 + 2 \)

Bu bölgü 342-də 3 rəqəminin 300, 4 rəqəminin 40 və 2 rəqəminin 2 olduğunu görməyə kömək edir. Bunu başa düşmək rəqəmlərlə aydın və mütəşəkkil şəkildə işləməyinizə kömək edir.

Həll olunmuş Nümunə 1: Ədədin Yer Dəyərlərinə Ayrılması

Məsələ: 342 rəqəmini onun yer qiymətlərindən istifadə edərək yazın.

Addım 1: Nömrədəki hər bir rəqəmi müəyyənləşdirin. 342 rəqəmində 3, 4 və 2 rəqəmləri var.

Addım 2: Hər rəqəmin yerini müəyyənləşdirin. 342-də 3 rəqəmi yüzlər, 4 rəqəmi onluqlar, 2 rəqəmi isə birliklər yerindədir.

Addım 3: Hər rəqəmi yer dəyəri ilə yazın:

Addım 4: \( 300 + 40 + 2 = 342 \) olduğunu göstərmək üçün bu dəyərləri birləşdirin. Bu, 342 rəqəmindəki hər rəqəmin mövqeyinə görə necə xüsusi dəyərə malik olduğunu göstərir.

Həll olunmuş Nümunə 2: Ən Böyük Tapmaq üçün Rəqəmlərin Müqayisə edilməsi

Məsələ: 68 ədədində daha böyük rəqəmi tapın.

Addım 1: İki rəqəmə baxın: 6 və 8.

Addım 2: İki rəqəmi müqayisə edin. 8 6-dan böyük olduğu üçün böyük rəqəm 8-dir.

Addım 3: 68 rəqəmində ən böyük rəqəmin 8 olduğu qənaətinə gəlirik. Bu sadə müqayisə rəqəmlərin ölçüsünü başa düşməyə kömək edir.

Cüt və Tək Rəqəmlər

Rəqəmləri cüt və tək qruplara bölmək olar. Cüt rəqəmlər 2-yə bölünə bilən rəqəmlərdir. Cüt rəqəmlər 0, 2, 4, 6 və 8-dir. Tək rəqəmlər 2-yə tam bölünə bilməz. Tək rəqəmlər 1, 3, 5, 7 və 9-dur.

Nümunələr və sadə hesab məsələləri ilə tanış olduqda bu qrupları tanımaq faydalıdır. Məsələn, 3-ün tək və 4-ün cüt olduğunu bilmək nömrələri tənzimləməyə və əlavə və ya çoxaldıqda onların necə davranacağını proqnozlaşdırmağa kömək edə bilər.

Rəqəmlərdə Simmetriya və Nümunələr

Bəzi rəqəmlər onların formalarına baxdıqda maraqlı görünür. Məsələn, 8 rəqəmi simmetrik bir forma malikdir. Bu o deməkdir ki, müxtəlif rakurslardan demək olar ki, eyni görünür. Bu nümunələri öyrənmək rəqəmlərlə işləməyi daha əyləncəli edə bilər.

Bəzən rəqəmlər rəqəmlər yazarkən təkrarlanan nümunələr əmələ gətirir. Məsələn, 0-dan 9-a qədər təkrar saydığınız zaman yadda saxlamaq asan olan bir nümunə görürsünüz. Bu nümunələri tanımaq rəqəm hissinizi inkişaf etdirməyə kömək edir və riyaziyyatı öyrənməyi daha zövqlü edir.

Ondalık Sistem

Rəqəmlər onluq sistem adlanan say sistemi yaratmaq üçün istifadə olunur. Bu sistem 10 simvola - 10 rəqəmə əsaslanır. Onluq sistemdə hər bir rəqəmə öz mövqeyindən asılı olaraq qiymət verilir (birlik, onluq, yüzlük və s.). Biz yalnız 10 rəqəmdən istifadə etdiyimiz üçün onluq sistem çox səmərəli və sadədir.

Məsələn, onluq sistemdəki 73 rəqəmi o deməkdir ki, bizdə 7 onluq və 3 birlik var. Bunu belə düşünə bilərik:

\( 7 \times 10^1 + 3 \times 10^0 = 70 + 3 \)

Onluq sistemini başa düşmək vacibdir, çünki bu, rəqəmsal cihazlarda nömrələri sayarkən, əlavə edərkən və hətta oxuyarkən hər gün istifadə etdiyiniz sistemdir.

Texnologiyada və Müasir Gündəlik Həyatda Rəqəmlər

Bu gün rəqəmlər texnologiyada çox vacibdir. Rəqəmsal saatlar, kalkulyatorlar və kompüterlər məlumatı göstərmək üçün rəqəmlərdən istifadə edirlər. Oyunda taymerə baxdığınız zaman və ya telefon ekranına baxdığınız zaman siz rəqəmləri təşkil edən rəqəmləri görürsünüz.

Məsələn, bir video oyunu oynayarkən xal çox vaxt nömrə kimi göstərilir. Kompüter oyundakı hərəkətlərdən xal hesablamaq üçün rəqəmlərdən istifadə edir. Eynilə, rəqəmsal termometr temperaturu göstərmək üçün rəqəmlərdən istifadə edir. Rəqəmlərlə texnologiya arasındakı bu əlaqə müasir dünyamızda rəqəmlərin nə qədər vacib olduğunu göstərir.

Rəqəmlər Gündəlik Tapşırıqlarda necə kömək edir

Rəqəmlər də riyaziyyat dərsindən kənar bir çox tapşırıqları yerinə yetirməkdə bizə kömək edir. Alış-verişə getdiyiniz zaman əşyaların qiymətini görmək üçün rəqəmlərdən istifadə edirsiniz. Avtobusda və ya qatarda cədvəllər və dayanacaqlardakı nömrələr rəqəmlərdən ibarətdir. Evdə olduğunuz zaman belə, mikrodalğalı soba və ya sobadakı rəqəmlər düzgün vaxtı və temperaturu təyin etməyə kömək edir.

Təsəvvür edin ki, mətbəxdə kömək edirsiniz və siz taymeri 15 dəqiqə təyin etməlisiniz. Mikrodalğalı sobada 1 və 5 rəqəmlərini görürsünüz. Bu rəqəmlər sizə taymerin nə qədər işlədiyini dəqiq bildirir. Rəqəmləri hər dəfə görəndə unutmayın ki, onlar sizə vacib məlumat vermək üçün birlikdə işləyirlər.

Rəqəmlər və pul

Pul rəqəmlərin çox mühüm rol oynadığı başqa bir sahədir. Oyuncaqların, qəlyanaltıların və digər əşyaların qiymətləri rəqəmlərlə yazılır. Bir donuz bankında pul yığdığınız zaman, nə qədər qənaət etdiyinizi hesablamaq üçün rəqəmlərdən istifadə edirsiniz.

Məsələn, pula qənaət etmisinizsə və bu rəqəm 50-yə çatırsa, bu rəqəm 5 və 0 rəqəmlərindən ibarətdir. 5 rəqəmi sizdə 5 onluğun olduğunu (bu 50-dir), 0 isə heç birinin olmadığını göstərir. Bunu tanımaq sizə sahib olduğunuz pulun miqdarını başa düşməyə və sikkə və əskinasları asan hesablamağa kömək edir.

Rəqəmlər və ünvanlar

Rəqəmlərin başqa bir gündəlik istifadəsi ünvanlardadır. Hər evin və ya mənzilin nömrəsi var. Bu, insanlara yaşadıqları yeri tapmağa kömək edir. 123 nömrəli evi görəndə unikal yeri göstərmək üçün düzülmüş 1, 2 və 3 rəqəmlərini görürsünüz.

Rəqəmləri və onların nömrələri necə təşkil etdiyini bilmək ünvanları yadda saxlamağı və onları başqalarına çatdırmağı asanlaşdırır. Buna görə rəqəmlər təkcə məktəbdə deyil, həm də real dünyada çox faydalıdır.

Əlavə Real Dünya Nümunələri

Rəqəmlərə bir çox yerdə rast gəlinir və burada onların necə istifadə edildiyini göstərmək üçün daha çox nümunə var:

Rəqəmlər Haqqında Öyrənmənin Önəmi

Rəqəmləri öyrənmək riyaziyyatda yaxşı olmaq üçün ilk addımdır. Rəqəmləri oxumağı və yazmağı öyrəndikcə siz həm də problemləri həll etməyi, ölçüləri müqayisə etməyi və nümunələri başa düşməyi öyrənirsiniz. Rəqəmlər sadə hesablamalardan tutmuş daha sonra daha çox cəlb olunan problemlərin həllinə qədər bütün növ riyaziyyat tapşırıqlarında istifadə olunan hesablamada güclü təməl yaratmağa kömək edir.

Rəqəmlər rəqəmlərin əsas simvolları olduğundan, onların mənimsənilməsi əlavə, çıxma və hətta çoxaltmağı asanlaşdırır. Təcrübə edərkən, hər dəfə bir nömrə gördüyünüz zaman əslində birlikdə işləyən bu 10 vacib simvolun birləşməsinə baxdığınızı görəcəksiniz.

Əsas Konsepsiyaların İcmal

Rəqəmlər haqqında öyrəndiyimiz bəzi əsas fikirləri nəzərdən keçirək:

Hamısını Bir araya gətirmək

Rəqəmlər bütün say sistemimizin əsasını təşkil edir. Oyuncaqlarınızı saymaqdan tutmuş rəqəmsal saatda vaxtı oxumağa qədər rəqəmləri başa düşməyinizə kömək etmək üçün rəqəmlər həmişə var. Hər bir rəqəmin necə işlədiyini və onların daha böyük rəqəmlərə necə birləşdiyini öyrənməklə siz həm məktəbdə, həm də gündəlik həyatda sizə kömək edəcək möhkəm riyaziyyat anlayışı yarada bilərsiniz.

Rəqəmlərdəki dərslər bizə ən kiçik simvolun belə böyük məna daşıya biləcəyini görməyə kömək edir. Rəqəmləri tanımaq və istifadə etmək üçün məşq etdikcə siz müşahidə, sayma və nümunənin tanınması kimi vacib bacarıqları da öyrənirsiniz. Daha təkmil riyaziyyat mövzularını daha sonra öyrənməyə davam etdikcə bu bacarıqlar sizinlə birlikdə artacaq.

Download Primer to continue