Google Play badge

trung bình


Thuật ngữ 'trung bình' đề cập đến điểm 'trung bình' hoặc 'trung tâm'. Thuật ngữ này đề cập đến một số là đại diện điển hình của một nhóm số hoặc tập dữ liệu. Giá trị trung bình có thể được tính theo nhiều cách khác nhau, ở đây chúng tôi đề cập đến những cách được sử dụng phổ biến nhất: giá trị trung bình, trung vị và chế độ. Khi thuật ngữ 'trung bình' được sử dụng theo nghĩa toán học, nó thường đề cập đến giá trị trung bình, đặc biệt là khi không có thông tin nào khác được đưa ra. Xu hướng trung tâm là một từ thích hợp hơn để chỉ ý nghĩa, trung bình và chế độ. Thước đo xu hướng trung tâm là một giá trị duy nhất cố gắng mô tả một tập hợp dữ liệu bằng cách xác định vị trí trung tâm trong tập hợp dữ liệu đó.

Nghĩa là

Giá trị trung bình của dữ liệu chưa được nhóm hoặc dữ liệu thô thu được bằng cách cộng tất cả các quan sát và chia tổng số cho số lượng quan sát. Nếu x 1 , x 2 , x 3 ,...x n là n quan sát thì giá trị trung bình của chúng được ký hiệu là \(\bar x\) .
\(\bar x = \frac{x_1+x_2+x_3+...+x_n}{n} = \frac{\sum x}{n}\)

Mean = Tổng quan sát/Số quan sát

Ví dụ 1: Điểm của học sinh lớp 8 là 3, 5, 7, 10, 4, 6, 8 và 9. Hãy xác định điểm trung bình cộng.
Số học sinh trong lớp là 8.
Tổng số điểm ghi được , \(\sum x = 3 + 5 + 7 + 10 + 4 + 6 + 8 + 9 = 52\)
\(\bar x = \frac{52}{8} = 6.5\)

Ví dụ 2: Nếu trung bình cộng của 9, 14, x + 3, 12, 2x - 1 và 3 là 9. Tìm giá trị của x.
Số quan sát là 6
\(\sum x = 9 + 13+ x + 3 + 12 + 2x - 1 + 3\\ \sum x =39 + 3x\)

\(\frac{39 + 3x} {6} = 9\) => 3x = 54 - 39 => 3x = 15
∴ x = 5


Trung bình số học của dữ liệu được lập bảng

Nếu tần số của n quan sát x 1 , x 2 , x 3 ,...x n lần lượt là f 1 , f 2 , f 3 ,...f n thì \(\bar x\) của chúng là

\(\bar x = \frac{f_1x_1+f_2x_2+f_3x_3+...+f_nx_n}{f_1+f_2+f_3+...+f_n} \)

\(\bar x= \frac{\sum fx}{\sum f}\)

Ví dụ 1: Tìm giá trị trung bình của phân phối sau

x 5 6 7 số 8 9
f 4 số 8 14 11 3

Giải pháp:

x f fx
5 4 20
6 số 8 48
7 14 98
số 8 11 88
9 3 27
\(\sum f = 40\) \(\sum fx = 281\)

\(\bar x= \frac{281}{40} = 7.025\)


Chế độ

Chế độ dữ liệu thống kê là biến xảy ra thường xuyên nhất. Do đó, chế độ là giá trị của biến đó có tần số tối đa . Ví dụ: trong dữ liệu sau 2, 3, 4, 5, 4, 4, 5, 3, 7
Số 4 xuất hiện 3 lần (tối đa) nên 4 là cách của dãy số này.
Không nhất thiết là trong dữ liệu chỉ có thể có một chế độ. Chúng ta hãy xem một vài ví dụ:
Ví dụ 1: Tìm kiểu của các dữ liệu sau: 2, 3, 8, 9, 4
Vì mỗi số chỉ xuất hiện một lần và do đó nó không có chế độ.

Ví dụ 2: Trong dữ liệu 2, 2, 2, 3, 4, 4, 6, 6, 6, 7- 2 và 6 đều là chế độ.

Ví dụ 3: Tìm kiểu của dữ liệu sau:

Cỡ áo (tính bằng inch) 32 34 36 40
Số áo đã bán 45 35 15 40

Trong phân phối tần số, chế độ là giá trị của biến có tần số cao nhất. Phương thức phân phối này là áo sơ mi 32".


Trung bình

Nếu các quan sát đã cho được sắp xếp theo thứ tự, tốt nhất là từ nhỏ nhất đến lớn nhất, thì trung vị được định nghĩa là quan sát ở giữa nếu số lượng quan sát là số lẻ. Nếu số quan sát là số chẵn thì trung bình của hai quan sát ở giữa là trung vị. Do đó, sẽ có số quan sát trên và dưới trung vị bằng nhau.

Nếu số quan sát là n thì
Trung vị = giá trị của quan sát thứ \(\frac{(n + 1)}{2 }\) nếu n là số lẻ
= trung bình của \(\frac{n}{2}\) thứ\((\frac{n}{2} + 1)\) thứ quan sát nếu n chẵn

Ví dụ 1: Xác định trung vị của các giá trị: 15, 6, 7, 14, 8, 10, 12
Sắp xếp dữ liệu theo thứ tự tăng dần: 6, 7, 8, 10, 12, 14, 15.
Vì n là 7 nên trung vị là giá trị của (7+1)∕2 = lần quan sát thứ 4. 10 là trung vị.

Ví dụ 2: Tìm trung vị của các giá trị: 30, 32, 36, 25, 28, 29, 31, 40
Sắp xếp dữ liệu theo thứ tự tăng dần: 25, 28, 29, 30, 31, 32, 36, 40
Vì n là 8 nên trung vị là giá trị trung bình của lần quan sát thứ 4 và thứ 5. = (30 + 31) ∕ 2 = 61/2 = 30,5


Biện pháp tốt nhất của xu hướng trung tâm là gì?
Giá trị trung bình là thước đo xu hướng trung tâm được sử dụng phổ biến nhất vì nó sử dụng tất cả các giá trị trong tập dữ liệu để tính giá trị trung bình. Nhưng trong trường hợp dữ liệu của bạn có giá trị ngoại lệ, giá trị trung bình là một lựa chọn tốt hơn. Giá trị ngoại lệ là các giá trị khác thường so với phần còn lại của tập dữ liệu bằng cách đặc biệt nhỏ hoặc lớn về giá trị số. Chế độ là thước đo duy nhất bạn có thể sử dụng cho dữ liệu phân loại không thể sắp xếp.

Download Primer to continue